Scientific Transactionsin Environment and Technovation

A unique fixation of the locus of basis elements in graphs

R. M anjusha and A. Sunny Kuriaksoe*
Department of Mathematics, Union Christian College Aluva, India
*Dean, Federal Institute of Science and Technology, Angamaly, India

https://doi.org/10.56343/STET.116.011.003.009
http://stetjournals.com

Abstract

The resolving set consisting basis elements is not unique for any graph. This paper examines how the basis elements can be uniquely placed on a graph so as to solve the network flow problems. A relation between connectivity and metric dimension of graph has been verified. Also discussed the parameter changes occurred in molecular graphs due to catenation.

Key words: Metric dimension, cut vertex, connectivity, molecular graph, hydrocarbons
Received: June 2017
Revised and Accepted : February 2018

INTRODUCTION

Connectivity is one of thebasic notions of graph theory. It is closely associated with the theory of network problems. Vertex connectivity playsa sufficient role to estimate the capacity of a network's normal operation. It is clear that the graph will become disconnected by theremoval of cut vertices. Therefore for thenormal functioning of thenetwork even if there is parallel paths it is essential that the connectivity is greater. Now the robots navigating through the network knows its position by means of distances from all the vertices in the graph. Here we relate connectivity of graphstop fix a unique position for the robots or unique vertices in the graph that becomes basiselements. We proved general theorems regarding the choice of the basis elements whenever connectivity changes. Also mentioned special graphs and their fixation of the resolving set.
The theory of metric dimension of graphs was developed by P.J.Slater, 1975. M etric dimension of a graph is the minimum number of vertices or basis elements required for the navigation. These basis elements identify all thevertices in the graph by means of distances from it.
Molecular graph can be inferred as a mathematical graph whereeach atom represents nodes and the each bond between atoms represents edges. By means of the basis elements we can define another distance matrix with respect to the nodes in thegraph.

PRELIM IN ARIES AND BASIC NOTIONS

Weuseall thedefinitions, results and notations about graphs and about metric dimension of graphs given in (Alexandrut.Balaban, 1985; Caceres et al, 2005; Chartrand et al., 2000; Douglas B. West; Erdos, 1960; Harary et al., 1976).

[^0]Let $G=(V, E)$ beasimpleconnected non empty graph. A cut vertex of a graph is a vertex $v \in V(G)$ whose removal will disconnect thegraph or reduces into K_{1}.

The vertex connectivity of a graph is the minimum number of vertices whoseremoval will disconnect the graph or reduces into. It is denoted by.
A graph is said to ben-connected if and it is said to be 2-connected if and only if there are two internally disjoint paths between thedistinct vertices and .

A chemical graph is a graph whose vertices are the atoms and theedges correspond to chemical bonds.

Locus of Robots with respect to different graphs

In this section weestablished the result that fixes the locus of the basis elements navigating in different graphs. Connectivity of graphs has great importance in order to maintain the information and basic properties in network. Herewe try to connect thecut vertices and navigation of robots in thenetwork.

RESULTS

Theorem

If $\beta(G)=1$ and $\kappa(G)=1$ then place the basis element on a vertex other than the cut vertex.

Proof

Since $\kappa(G)=1$ the graph G has a cut vertex say v. Take two arbitrary vertices u and win G. Clearly every u - w path passes through the cut vertex v. Let there be a path say $u_{1}, u_{2}, \ldots, u, v, w, \ldots, u_{n}$ in G. Then obviously coordinate of the vertices u and w will be the same if we place the basis element on the cut vertex v. This is not possible. So place the basis element on a vertex that is not a cut vertex.

Example

In the case of $P_{n}, \beta\left(P_{n}\right)=1$ and $\kappa\left(P_{n}\right)=1$. It is clear that all the vertices other than end vertices are cut vertices. So we can place the basis element on either of thetwo end vertices v_{1} or v_{n}.

Theorem

Let $S \mid=\kappa(G), \beta(G)=2$ and $\kappa(G) \geq 2$. Then place one of the basis element on a vertex $v \in S$ and the other basis element on a vertex that is adjacent to v. Otherwise place the basis elements on the vertices that are adjacent to v.

Proof

First suppose that $S=\{u, v\}$ and $e=u v$ be an edge in G. Since $\kappa(G)=2$ there is another path say $u, u_{1}, u_{2}, \ldots, u_{n}$ exists other than the edge $e=u v$. Suppose we place the basis elements on u and v and both u and v are adjacent to more than one vertices. Then those vertices have same coordinate (1,1). Now consider the case that both u and v are not adjacent to any of the $u_{i}, i=1,2, \ldots, n$ then we get a cycle $C=u, u_{1}, u_{2}, \ldots, u_{n}, v, u \$$. Obviously $d(u) \geq 3$ and $d(v) \geq$ 3otherwise $\omega(G-(u v))$ is not greater than $\omega(G)$. The coordinate of u_{1} will be $(1,2)$ and u_{n} will be $(2,1)$. Since $d(u) \geq 3$ and $d(v) \geq 3$ both u and v is adjacent to the vertices say v_{j} and v_{k} such that $v_{j} v_{k} \notin\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Then v_{j} 's coordinate is (1,2) and v_{k} 's coordinate will be $(2,1)$. That is not possible since in that case we will not obtain distinct coordinates. So place one of the basis element on one vertex in S and the other basis elements on the vertices that are adjacent to the vertices S.

Suppose $\omega(G-(u v))>\omega(G)$.Let $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right.$ \}and $W=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ where $r \leq m o r ~ r \geq m$. If $r<$ m then we can place the basis elements on the cut vertices and if $r \geq m$ and $m \geq 1$ then do not place the basis elements on the cut vertices. In particular if $=1, m \geq 1$ and we place the basis elements on the cut vertex then the adjacent vertices of that cut vertex will have same coordinates.

Example

Consider the graph below. It is clear that $\beta(G)=$ 2 and $\kappa(G)=2$. So $r=m$. In the first figure it is

P-ISSN 0973-9157
E-ISSN 2393-9249
January to M arch 2018
shown that if we place the basis elements on the cut vertices namely u and v then the vertex in the graph does not have distinct coordinates. In the second figure we place the basis elements on the vertices that are adjacent to the vertices u and v then the all the vertices are of distinct coordinates.

Figure 1

Figure 2

Theorem

If $G-S=K_{1}$ and $|S|>1$ then place the basis element on the cut vertices.

Proof

If $G-S=K_{1}=u$ (say) then u is adjacent to the vertices in S as well as the other vertices in G. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $W=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be the set whose removal reduces the graph to K_{1} and the basis of G. The coordinate of $v_{l}, l=1,2, \ldots, r$ are $\left(a_{l 1}, a_{l 2}, \ldots, a_{l m}\right)$ where $a_{l i}=d\left(v_{l}, v_{i}\right), i=1,2, \ldots, m$. Then the coordinate of u will be $\left(a_{l 1}+1, a_{l 2}+\right.$ $\left.1, \ldots, a_{l m}+1\right)$ distinct from the other vertices coordinates. Thus we can choose the vertices in S as basis elements. In particular as an optimization we consider the case of complete graph with n vertices. We know that $\beta\left(K_{n}\right)=n-1=\kappa\left(K_{n}\right)$ and the removal of thesen $n-1$ vertices reduces K_{n} into K_{1}. So we can choose these $n-1$ vertices as basis elements.

Theorem

Let the cut vertices of C_{n} are u and v. Then we can choose the two basis elements as the cut vertices in the following cases:
(i) If u is adjacent to w (not a cut vertex) then choose u and w as basis elements.
(ii) Clearly u and v are not adjacent in C_{n} then we have two possibilities
Case 1: If u and v are at an even or odd distance then choose u and v as basis elements if the number of vertices on the two internally disjoint $u-v$ paths are not equal.
Case 2: If $d(u, v)=2 n+1$ or $d(u, v)=$ $2 n$ then choose one of the basis element as u and the other as a vertex adjacent to v.

Proof

(i) In this case the coordinate of u and w are $(0,1)$ and $(1,0)$ respectively. Let the cycle $b \in$ $u, w, v_{1}, v_{2}, \ldots, v_{n}, u, n \geq 1$. If $n=1$ we get a triangle then the coordinate of v_{1} will be $(1,1)$. If $n=2$ then we get the coordinates of v_{1} and v_{2} are $r\left(W / v_{1}\right)=$ $(2,1)$ and $r\left(W / v_{2}\right)=(1,2)$. If $n=3$ the coordinates are $r\left(W / v_{1}\right)=(2,1), r\left(W / v_{2}\right)=(2,2)$ and $r\left(W / v_{3}\right)=$ (1,2).
If there is a vertex v_{j} such that $d\left(u, v_{j}\right)=d\left(w, v_{j}\right)=$ m then the coordinate of v_{j} is (m, m) and the coordinates of the vertices $v_{j-1}, v_{j-2}, \ldots, w$ are $(m, m-1),(m-1, m-2), \ldots,(m-(m-1), m-m)$
and the coordinates of $v_{j+1}, v_{j+2}, \ldots, u$ are $(m-$ $1, m),(m-2, m-1), \ldots,(m-m, m-(m-1))$ respectively.

If there is no such v_{j} so that $d\left(u, v_{j}\right)=d\left(w, v_{j}\right)$ then we can find two adjacent vertices v_{j} and v_{j+1} for which v_{j} is the vertex at distance m from u and $m-1$ from w and v_{j+1} is the vertex at a distance $m-1$ from u and m from w. Then the coordinate of $v_{j-1}, v_{j-2}, \ldots, w \quad$ are $\quad(m-1, m-2),(m-2, m-$ $3), \ldots,(m-(m-1), 0)$ and the coordinates of v_{j+1}, v_{j+2}, \ldots,uare $\quad(m-2, m-1),(m-3, m-$ $2), \ldots,(0, m-(m-1))$. Thus in any case we have distinct coordinate for all the vertices if we choose u and w as basis elements.

Proof(ii)

Suppose u and v are at an even distance and the number vertices on two internally disjoint paths are not same. Let $d(u, v)=2 k$ then the coordinates of u and v are $(0,2 k)$ and $(2 k, 0)$. Let the internally disjoint $u-v$ paths from u to v are $P=u, u_{1}, u_{2}, \ldots, u_{p}, v$ and $Q=u, v_{1}, v_{2}, \ldots, v_{q}, v$ where $p+q=n-2$ and $p \neq q$.
Suppose p is even. Let $p=2 n$. In this case between u and v there are two middle vertices u_{j} and u_{j+1} with coordinates $(n, n+1)$ and $(n+1, n)$ respectively. Then the coordinates of $u_{j-1}, u_{j-2}, \ldots, u_{1}$ $\operatorname{are}(n-1, n),(n-2, n-1), \ldots,(n-1, n+$
$1), \ldots,\left(1, \min \left(n, d\left(u, u_{1}\right)\right)\right.$ and the coordinates of $u_{j+2}, u_{j+3}, \ldots, u_{n}$ are
$(n+1, n-1), \ldots,\left(\min \left(n, d\left(u, u_{n}\right), 1\right)\right.$. Thereby all coordinates are distinct. Similarly if q is even we get the coordinates of the vertices on Q aredistinct.

Suppose p is odd. Let $p=2 n+1$. In this case between u and v there is middle vertex say u_{j} with coordinate $(n+1, n+1)$. Then the coordinate of $u_{j-1}, u_{j-2}, \ldots, u_{1} \quad$ are $\quad(n, 2 n-1),(n-1,2 n-$ $2), \ldots,(1, n)$ and the coordinate of $u_{j+1}, u_{j+2}, u_{j+3}, \ldots, u_{n} \quad$ are $(2 n-1, n),(2 n-2, n-$ $1), \ldots,(n, 1)$. Thus all the vertex coordinates are distinct. Similarly if q is odd then we get the coordinates of the vertices in Q aredistinct.
$\begin{array}{ll}\mathrm{P}-\text { ISSN } & 0973-9157 \\ \mathrm{E}-\text { ISSN } & 2393-9249\end{array}$
E-ISSN 2393-9249

CONCLUSION

Fixing a unique place or choosing a unique vertex as the basis element is significant for solving a problem in navigation. In this paper we proved some results on the choice of basis elements and some applications. Further study is required to investigate the properties of hydrocarbons by means of metric dimension of graphs.

REFERENCES

Alexandrut.Balaban, 1985. A pplications of graph theory in chemistry, J. Chem. InJCompur. Sci., 25, 334-343.https://doi.org/10.1021/ci00047a033
Caceres, J., Hernado, C., M ora, M., Pelayo, I. M., Puertas, M. L., Seara, C. and Wood, D.R. 2005. On the

Metric Dimension of Some Families of Graphs, Electronic N otes in D iscreteM athematics, Vol. 22, pp. 129-133.
https://doi.org/10.1016/j.endm.2005.06.023
Chartrand, G., Eroh, L., Johnson, M. A. and Oellermann, O. R. 2000. Resolvability in graphs and Metric Dimension of Graph. Discrete A ppl. M ath., 105 (1-3), pp. 99-113.
https://doi.org/10.1016/S0166-218X(00)00198-0
Douglas B. West, Introduction to Graph Theory, Second Edition, University of Illions-Urbana.

Erdos, P. 1960. On sets of distances of ' n ' points in Euclidean space, Publ. M ath. Inst. H ung. A cad. Sci, 5, 165-169.
Harary, F. andMelter, R.A. 1976. On the Metric Dimension of a Graph, Ars Combinatorica, Vol. 2, pp. 191-195.

Manjusha, R. and Sunny Kuriakose, A. 2015a. An Application of $G_{d}-M$ etric Spaces and Metric Dimension of Graphs, International Journal on Applications of Graph Theory in Wireless A d hoc Networks and Sensor N etworks(GRAPH-HOC) Vol.7, No.1, March 2015. https://doi.org/10.5121/igraphoc.2015.7101
Manjusha, R. and Sunny Kuriakose, A. 2015b. Metric Dimension and Uncertainty of Traversing Robots in a Network, International Journal on Applications of Graph Theory in WirelessAd hoc Networks.

Slater, P. J. 1975. Leaves of trees. In: Proc. $6^{\text {th }}$ Southeastern Conf. on Combinatorics, Graph Theory and Computing, 14, pp 549-559.

[^0]: *Corresponding Author :
 email: asunnyk@gmail.com

